ඔන්න ඉතින් අද ඔයාලට කියලා දෙන්නේ ගණන්කාරයෝ ගැන.සිංහලෙන්ම කිව්වොත් Maths ගැන.ඔන්න මට පේනවා සමහර අයගේ මුහුණු මැලවෙනවා.පොඩි කාලේ ඉස්කෝලේ යනකොට ගොඩක් අයගේ (අ)ප්රියතම විෂය වෙන්නේ ගණන් නේ.හැබැයි ඉතින් ඔය අස්සේ ගණන් පිස්සොත් ඉන්නවා.ඔන්න ඔය දෙකොට්ටාෂෙන් මං අයත්වෙන්නේ දෙවැනි ගොඩට.අදටත් මගේ ප්රියතම විෂයක් තමා ගණිතය.
ගොඩ දෙනෙක් නොදන්නවා වුනාට මේ ගණිතය කියන්නෙත් එක්තරා කලාවක්.හැබැයි ගානට කරන්න ඕන.නැත්නම් ඉතින් පිස්සු තමා.ඉතින් ඔය කාට කාටත් කියවලා තේරුම් ගන්න පුළුවන් ගණිතයේ තියෙන පුදුම හිතෙන කාරනා ටිකක් තමයි මං අද ලියන්නේ.නැත්නම් කට්ටියක් ආසාවෙන් කියවද්දී,කට්ටියකට එපා වෙන්න පුළුවන්නේ.
ඔන්න කවුරුත් දැකලා ඇතිනේ මේ සංකේතය.මේක ග්රීක හෝඩියේ අක්ෂරයක්.සිංහලෙන් ශබ්ද වෙන්නේ "පයි"
කියලා.(අනේ මගේ දුප්පත් බ්ලොගේත් මින්පස්සේ sex සර්ච් වලට අහුවෙනවා).යම් වෘත්තයක විෂ්කබ්බයට එහි පරිධිය දක්වන අනුපාතය තමයි මේකෙන් හැදින්වෙන්නේ.මේක නියතයක්.හැබැයි ලස්සන වැඩේ කියන්නේ.මේක කොච්චර දෂ්මස්ථාන ගණනකින්වත් ලියලා ඉවරකරන්න නම් බෑ .ඒ වගේම තමයි ඒ දශමස්තානත් එකම පිළිවෙලකට නෙමෙයි පිහිටන්නේ.ඒක නිසා මතක තියාගන්න විදිහකුත් නෑ.සරලව 3.14 ක් කියලා කියනවා.ඒ වගේම තමයි මේ දෂ්මස්ඨාන මතකෙන් ලියන ඒවාට තරගත් පැවැත්වෙනවා.දැනට දශමස්ථාන 67,890 ක් ලියපු චීන ජාතිකයෙක් තමා මේ ගීනස් වාර්තාවට හිමිකම් කියන්නේ.මෙතනින් ගිහින් වැඩි විස්තර දැනගන්න පුළුවන්.
0 ඉදලා 999 වෙනකල් ඕනෑම ඉලක්කමක් ඉංග්රීසියෙන් ලියන්න පුළුවන් A අකුර භාවිතා නොකර.one thousAnd ලියද්දී තමයි ඉස්සෙල්ලම A අකුර ඕනා වෙන්නේ.
එකම පරිධියක් ඇති හැඩතල ඇන්දොත් ඒවායින් වැඩිම වර්ගඵලයක් අයිති කරගන්නේ වෘත්තය එහෙමත් නැත්නම් රවුම.
googol කියන වචනෙන් තමා මේක හැදිලා තියෙන්නේ.එහෙම කියන්නේ 1 යි බින්දු 100 කින් හැදෙන ඉලක්කමට කියන නමයි.
4 තමයි ඉංග්රීසියෙන් ලිවීමේදී ඉල්ලක්කමේ ගන්නට අකුරු භාවිතාවෙන එකම ඉලක්කම.අනිත් කිසිවක එසේ නෑ.
ගණන් ගැන කියලා ගැටළුවක් දෙකක් නොදී යන එක ටිකක් අවුල් වගේ නේ.ඔන්න එහෙනම් පල්ලෙහා තියෙන ගැටලුවලට උතර දෙන්නලා.හොදේ.
ඔන්න පලවෙනි ගැටලුව ටිකක් ලේසි එකක්
a = b සමාන යයි සිතන්න.
දැන් දෙපසම a ගෙන වැඩි කරන්න.
a2 = ab
දැන් දෙපසටම a2 – 2ab එකතුකරන්න
a2 + a2 – 2ab = ab + a2 – 2ab
දැන් ඒක අපිට මෙහෙමත් ලියන්න පුළුවන්නේ.
2a2 – 2ab = a2 – ab
තවත් සරල කලොත් මෙහෙමත් ලියන්න පුළුවන්
2(a2 – ab) = (a2 – ab)
දැන් දෙපසම (a2 – ab). ගෙන් බෙදමු.
2 = 1
හෑ.....මෙහෙම වෙන්න බෑනේ.මට කොහෙද වැරදුනේ කියලා පෙන්නලා දෙනවද ?
ඔන්න ඊලග ගැටලුව ටිකක් සංකීර්ණයි.
හොදට අහගන්න.ඔන්න ඔයාලට දීලා තියෙනවා 40 kg යකඩ පඩියකුයි.තැටි තරාදියකුයි.සීනි ගෝනියකුයි.
ඔන්න තියෙනවා පඩි 4 .දැන් මේවයේ බර මොනවද කියලා තමයි මං අහන්නේ.
උත්තර දෙමුකෝ එහෙනම්..........
update......
ඔන්න තරගේ ඉවරයි ,ජයග්රහණය කල silent sahan සහ දූපත් වැසියාට සුබ පැතුම්.උත්තර පල්ලෙහා කොමෙන්ට් වල තියෙනවා බලන්නකෝ ......
හොදට අහගන්න.ඔන්න ඔයාලට දීලා තියෙනවා 40 kg යකඩ පඩියකුයි.තැටි තරාදියකුයි.සීනි ගෝනියකුයි.
හරි ඔන්න ඔය ටික දීලා ඔයාලව කඩේකට දානවා සීනි කිරන්න.දැන් ඔයාලා ඔය යකඩ පඩිය කෑලි 4 කට කඩාගන්න ඕන.එතකොට ඔයාලට කඩේට එන ඕනෑම එක්කෙනෙක් ඉල්ලන සීනි ප්රමාණයක් කිරලා දෙන්න පුළුවන් වෙන්න ඕන අර පඩි 4 හෝ ඉන් කිහිපයක් සහ තරාදිය පමණක් භාවිතා කරලා.හැබැයි මතක තියාගන්න කිරන්න පුළුවන් සම්පූර්ණ කිලෝ ගණන් විතරයි.500 g,250 g කිරන්න බෑ මේ විදිහෙන්.ඒ වගේම එකපාරක් විතරක් තරාදිය පාවිච්චි කිරීමෙන් ඕනෑම කිලෝ ගානක්(1 - 40 දක්වා) කිරන්න පුළුවන් වෙන්නත් ඕන.ඒ කියන්නේ කිලෝ 2 ක් ඉල්ලුවොත් කිලෝ 1 ගානේ දෙපාරක් කිරලා දෙන්න බෑ.පොඩි උදව්වක් කරනවනම් පඩි 4 බරේ එකතුව 40kg ක් වෙනවා.ඒ වගේම 1 kg ඉදලා 40kg වෙනකල් ඕනෑම සම්පූරණ කිලෝ ගානක බරක් කිරන්නත් පුළුවන් වෙන්න ඕන.පැහැදිලි ඇති නේද?මං දැන් අහන්නේ ඒ පඩි 4 බරවල් මොනවද කියලා....
ඔන්න තියෙනවා පඩි 4 .දැන් මේවයේ බර මොනවද කියලා තමයි මං අහන්නේ.
උත්තර දෙමුකෝ එහෙනම්..........
update......
ඔන්න තරගේ ඉවරයි ,ජයග්රහණය කල silent sahan සහ දූපත් වැසියාට සුබ පැතුම්.උත්තර පල්ලෙහා කොමෙන්ට් වල තියෙනවා බලන්නකෝ ......
ReplyDelete01.
මේක නම් වෙන්නේ විචල්ය සංක්යා එකතු කිරීමේදී
අපි පොදුවේ සළකන නීති නිසා හසරැල්.ඔය නීති
පැත්තකට දාල හැදුවොත් ප්රශ්නයක් පැන නගින්නේ
නැහැ.ගාණ හදාගෙන යද්දී වම් පැත්තට එක නීතියකුත්
දකුණු පැත්තට එක නීතියකුත් අපි නොදැණුවත්වම
මොළෙන් add වෙනවා..
එතැන ඉඳන් අපේ මොළේ අපිව රවටනවා.නමුත් බලන්න
a=b නොවන බව අන්තිමට එන උත්තරෙනුත් පැහැදිළියි නේද?
( ඒත් ඒක නම් වෙන්නේ වෙනත් සිද්දියක් නිසා . ඒ theory එක අනික් ඒවට apply කරන්න බැහැ .මුළු ගණිතයම බොරු වෙනවා ඔතොකොට .)
මතක තියාගන්න ගණිතය කියන්නේ මායාවක්.ගාණක් හදද්දී මායාවට
අහු වෙන්න හොඳ නැහැ!
02.මායාවේම කොටසක් ...
පලවෙනි ගැටලුවේදී a = b කියන එක හරි.නමුත් මන් ගාන හදද්දී එක තැනකදී වැරද්දක් කරලා තියෙනවා (ඒකටනම් ගණිතයේ එක් සංකල්පයක් බලපානවා,ඒක හැබැයි කවුරුත් දන්නා එකක්)මන් අහන්නේ මන් වරද්දපු තැන කොහෙද කියලා....
Deleteදෙවැනි ගැටලුවෙදිනම් ඕනෑම තැනකදී ප්රායෝගිකව වුනත් කරලා පෙන්නන්න පුළුවන්.පඩි 4 බර (නැත්නම් ස්කන්දය)තමයි මන් අහන්නේ ???
"a = b සමාන යයි සිතන්න." හසරැල් ඔහොම හිතුවට පස්සේ ආයේ මොනවා හිතන්න බැරිද අපිට.මෙහෙම ගණන් වලදී තමන්ට ඕනේ ඕනේ විදිහට නොමග යවන්න එක එක උප්පරවැට්ටි කරන්න පුළුවන්..
Deleteමේ ගානෙත් ඔහොම ඒවා කීපයක් තියෙනවා .මම එකක් කිව්වොත් ඔයාට කියන්න පුළුවන් නෑ මේක කියල .ඔයා කියන දේට මට කියන්න පුළුවන් නෑ මේක කියල...
"දැන් දෙපසම a ගෙන වැඩි කරන්න." මෙතන a වෙනුවට b ගෙන් බෙදලා බලන්න .උත්තරේ වෙනස් ..
"දැන් දෙපසටම a2 – 2ab එකතුකරන්න " මෙතන ඇයි මේ ප්රකාෂනයම ගත්තේ ? ඔතනට වෙන දෙයක් දැම්මොත් sum එක 2=1 වෙන්නේ නැහැ.
ඔහොම ගණන් දෙන්නේ හසරැල් කොහෙන් හරි පාඨකයාව මුලා
කරන්න.ඒ නිසයි කිව්වේ මුළින්ම a=b කියල හිතුවොත් කිසිම
වෙනත් ගණිත කර්මයකුත් වලංගු නැහැ.මම කියන ඕනෙම දේකට
ඔයාට දිනන්න ඕනේ තරම් නිදහසට කරුණු ඔය විජ්ජාවේ තියෙනවා .
( මන් මේ කතා කරන්නේ A/L maths නෙවේ හරිද ? A/L maths වලින් හැදුවොත් නම් ඔයාට ගැළවෙන්න අග සිට මුලටම කරුණු තියෙනවා .මම quote කරලා තියෙන්නේ ඒවා තමයි.)
හරි සහන්,මට වැරදිච්ච තැනනේ ඇහුවේ,මන් මේ ගාන හදද්දී මුලික ගණිත සංකල්පයක් උල්ලංගනය කරලා තියෙනවා,ඒක මොකක්ද කියලයි මන් අහන්නේ,අන්තිම උත්තරේ වැරදි එකක් එන්නේ ඒ නිසයි,ඒක පෙන්වලා දෙන්න.
Deleteඇත්තටම පාටකයා මුලා කරලා නෑනේ,මන් කියනවනේ මේක වැරදියි කියලා,මන් අහන්නේ වරද්දපු තැන....
හරි,පලවෙනි එක පැත්තකින් තියමුකෝ.දෙවැනි ගාන ගැන මොකද කියන්නේ?ඒක ප්රායෝගික ගැටලුවක්නේ
"""2(a2 – ab) = (a2 – ab)"""
Deleteඔතන ඔයාට දකුණු පැත්ත එක පදෙන් වරහනක් දාල
"(a2 – ab)" ගෙන් බෙදන්න බැහැ.ඒක තනි පදයක් නෙවේ.
02.
27 , 9 , 3 , 1 .
දැන් පිළිගන්නවද මන් ගණන් දන්නවා කියල ? හි හි
මචන් මන් විහිලුවට කිව්වේ හොදද ? මුල් ගානේදී මම
කියන්නේ නැහැ ඔයා වංචාවක් කරනවා කියල..
මේ ගණන් වල හැටිනේ ඒක ..ඉස්සර මතක ඇතිනේ
ඕවට කොච්චර තර්ක කරනවද කියල කන්නේ බොන්නේ
නැතුව ..අඩේ අවුලක් හිතන්න එපා ok ...
මෙන්න ජයග්රාහකයා.....ගහන්න අත්පුඩියක්.....
Deleteපලවෙනි එකේ ගාන වරද්දපු තැන මං දූපත් වැසියාගේ කොමෙන්ටුවේ දාලා තියෙනවා.
දෙවැනි එකේ උත්තරේ තමයි 1kg , 3kg , 9kg , 27kg.
මේකෙදි වැදගත්ම දේ තමයි තැටි තරාදිය,උදාහරයක් විදිහට කවුරුහරි ඇවිත් සීනි කිලෝ 2 ක් ඉල්ලුවොත් අපි එක පැත්තකට 3 kg පඩියයි අනිත් පැත්තට 1kg පඩියයි දාලා 1kg පඩිය පැත්තට සීනි කිලෝ 2 ක් දාද්දී තරාදිය balance වෙනවා.ඔන්න ඕක හිතුවනම් උත්තරේ ලේසියි.ඔය විදිහට 1kg ඉදලා 40kg වෙනකල් ඕන බරක් කිරන්න පුළුවන්...ට්රය් කරලා බලන්නකෝ
ගණන් කම්මැලි උනත් ඉදලා හිටලා මේ වගේ ප්රශ්නයක් අරගෙන විසදලා පොඩ්ඩක් සතුටුවෙන්න....ටටා...
හසරැල් නම් ඒ පැත්තේ ආවට නොදැක්ක අය වෙනුවෙන් link එකක් දැම්මට කමක් නැහැනේ.හසරැල්ටත් මතකය අලුත් වෙන්න ඇත්තේ ගණිත පාඩම් ගැන ඒකෙන්.මාත් මේ ඔක්කොම පැත්තකට දාල ඉද්දියි spell binders දැකලා අවුරුදු ගාණක් පිටිපස්සට මතක් උනේ.
ReplyDeleteකඔරු ඉකෙයා.අපේ කාලයේ පුංචි විද්යාඥයා.My little hero.
එළ.දැනුම බෙදා හදාගන්න එක කොච්චර දෙයක්ද සහන්.කස්ටියම කියවලා දැනුම වැඩිකරගන්න
Deleteඔන්න දැන් එක්කෙනෙක් හරි උත්තරෙත් දීලලු තියෙන්නේ ප්රශ්න දෙකටම,තව කස්ටියට ට්රයි කරන්න පුළුවන්.හරි උත්තරේ තාම publish කලේ නෑ.ඉක්මන් කලානම්
ReplyDeleteමොලේ කචල් මල්ලි.. පස්සේ හිතමු
ReplyDeleteහරි උත්තර බලන්න පස්සේ මේ පැත්තේ ආයෙත් එන්න හොදේ
Delete0=0 යනු අතාර්කික ප්රකාශනයකි. ශුන්ය කෙසේනම් තවත් ශුන්යකට සම කරන්නද. මෙහි a2 + a2 – 2ab = ab + a2 – 2ab පියවරෙන් දෙපසම ශුන්ය කර ඇත.
ReplyDeleteඑවිට 1=2 පමණක් නොව ඕනිම ගානකට ඕනිම එකක් සමාන කල හැකියි.
x,y නැතුව නිකන් සරලව සංඛ්යා දෙකක් ගනිමු.
2-2=37-37, හරිනේ දෙපැත්තම බින්දුවයි.
(2*1^2)-(2*1*1)=(37*1^2)-(37*1*1)// මෙහි 1^2 යනු එකේ වර්ගයයි.
2(1^2-1*1)=37(1^2-1*1)
ඉතිං දෙපැත්තම (1^2-1*1) බෙදපු ගමන් 2=37 වෙනව.
යමක් හිතන්න පුළුවන් විදියේ පෝස්ටුවක්. ස්තුතියි යාළුවා.
හරි ඔන්න පලවෙනි ප්රශ්නෙට උත්තරේ හරි,කස්ටියට කම්මැලි හිතෙන නිසා ඔන්න මේක රිලීස් කළා.ඇත්තටම මීට කලින් එක්කෙනෙක් හරි උත්තරේ දීලා තියෙන්නේ.හැබැයි ඒකෙ උත්තර දෙකම තියෙන නිසා දැන්ම දාන්නේ නෑ.
Deleteදැන් තේරුනා නේද ?කොටින්ම කියනවනම් මන් එක තැනකදී දෙපැත්තම 0 න් බෙදලා තියෙනවා.ඒක වැරදියි.එහෙනම් කස්ටිය දෙවැනි එකටත් උත්තරේ දෙමුකෝ බලන්න.
මට බැරිම වැඩක් තමයි ඕක.ඔයාලම විසඳන්නකෝ
ReplyDeleteඑච්චර අමාරු නෑ,ටිකක් උත්සාහ කරලා බලන්නකෝ
Deleteඔය පළවෙනි එකේ සීන් එක තමයි 0/0 අතාත්ත්විකයි කියන එක! ඕක මචං අපි AL කරන කාලේ පොඩි එවුන් බය කරන්නත් පාවිච්චි කළා! අනිවා උඹත් එහෙම කරන්න ඇති! මමත් ආසම විෂයක්! අද ඉන්න field එකට ගොඩක්ම apply වෙන්නේ නෑ! හැබැයි essential! අපේ එහා පැත්තේ physical උන් අනුකලනය අවකලනය කරද්දී මොකද්දෝ කික් එකක් තාමත් ඇඟට එනවා බං!
ReplyDeleteඇත්ත.ගණන් කියන දේ කොච්චර කලත් එපා වෙන්නේ නෑ.කෝ දෙවැනි එකට උත්තරේ
Deleteගණන් කියන ඒව ඒ ලෙවල් වලින් පස්සෙ අමතක කරල දැම්මනෙ.
ReplyDeleteහා...හා...එහෙම කියලා බේරෙන්න බෑ හොදේ
Deleteඅඩෝ ගණන් කාරයා මමත් හොද ගණන්කාරයෙක් තමා (වැට මාර පොල්ලක් කඩා ගත්තහම)
ReplyDelete